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A Simplified Stability Criterion for Linear Discrete Systems 

E.  I.  Jury 

SUMMARY 

In this study a simplified analytic test of stability of linear discrete 

systems is obtained.    This test also yields the necessary and sufficient 

conditions for a real polynomial in the variable   z   to have all its roots 

inside the unit circle in the z-plane.    The new stability constraints require 

the evaluation of only half the number of Schur-Cohn determinants1' 2.    It 

is shown that for the test of a fourth-order system only a third order 

determinant is required and for the fifth-order only two determinants are 

required.    The test is applied directly in the z-plane and yields the minimum 

number of constraint terms.    Stability constraints up to the fifth-order case 

are obtained and for the n     order case are formulated.    The simplicity of 

this criterion is equivalent to that of the Lienard-Chipart criterion3 for the 

continuous case which has a decisive advantage over the Routh-Hurwitz 
4  5 criterion  '    . 

INTRODUCTION 

It is known that linear time-invariant discrete systems can be 

described by constant coefficient linear difference equations.    These 

equations can be easily transformed into the function of the complex 

variable   z   by the z-transform method.    One of the problems in the analysis 

of such systems is the test for stability,   i. e.,   to determine the necessary 

and sufficient conditions for the roots of the system characteristic equa- 

tion to lie inside the unit circle in the z-plane.    These stability tests 

involve both graphical procedure such as Nyquist locus,  Bode diagrams, 

and the root-locus,   and analytical methods such as Schur-Cohn or Routh- 

Hurwitz criteria.    Because of the higher order determinants to be evaluated 

using the presented form of the Schur-Cohn criterion,   many authors in 

the past have used either a unit shifting transformation * or bilinear 

transformation .    The latter transformation maps the inside of the unit 

circle in the   z = e   s   plane into the left half of the w-plane** and then 

applies the Routh-Hurwitz criterion.    This transformation involves two 

"^    This transformation uses   p = z-1 
** This transformation uses z = ^. 

+   Department of Electrical Engineering,   University of California, 
Berkeley,   California. 
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difficulties:   a) algebraic manipulation for higher-order systems becomes 

complicated,  and b) the final constraints on the coefficients in the z-plane 

become unwieldy and require algebraic redictions to yield the minimum 

number of terms.    Because of these limitations this criterion is not 

usually used for systems higher than second-order. 

A recent investigation by this author has shown that the evaluation 

of the Schur-Cohn determinants can be simplified considerably by making 

use of the real coefficients of the polynomial in z,   so that the manipulation 

involved in testing for the zeros of a polynomial are comparable to those 

using the "transformed {or modified) Routh-Hurwitz criterion",  thus 
avoiding the bilinear transformation    '   . 

The study in this paper represents a major simplification of the 

earlier work, where it is shown that only half the number of determinants 

are required for obtaining the stability constraints.    This simplification 

has a decisive advantage over the modified Routh-Hurwitz criterion and, 

indeed, higher-order systems can easily be tackled using the proposed 
stability test. 

THEORETICAL BACKGROUND 

In this section we review the simplifications which had been obtain- 

ed in an earlier publication 8' 9 and explain in detail the manipulations 
involved. 

Schur-Cohn criterion '   : 

If for the polynomials 

F(z) = a0 + a^ + a^ + 

all the determinants of the matrices 
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are different from zero,   then F(z) has no zeros on the circle | z| =1 and 

(j. zeros in this circle,   |JI being the number of variations in sign in the 

sequence 1,   | AJ   ,   | A^ |   ....   | A |   .    The proof of the above theorem 

is quite involved and is available in the literature '   .    This criterion was 

first introduced by Cohn in 1922,  and since that time   neither engineers 

nor mathematicians have simplified it to a usable form. 

For a system of order   n   to be stable,   all the   n   zeros of its charac- 

teristic   n     order equation must lie within the unit circle,  i. e. ,   the 

sequences,  1,   |A|,   | A-| , . . .   JA |   must have   n  variations in sign.    The 

stability criterion can,   therefore,   be expressed by the constraints   : 

| /^ |   < 0 ,   k odd 

| ^jj >  0 ,   k even,  k = 1,   2,   . . . n (3) 

For a discrete or a sampled-data system,   all the coefficients of 

the characteristic equation are real.    Hence,   the conjugate sign in (2) is 

superfluous.    It is the utilzation of this fact that leads to the simplifica- 
tion of (2). 

As noticed from (2),   the highest-order determinant | A j   is of 

order 2n,   while the characteristic equation is of order   n.    Hitherto this 

constituted one of the discouraging facts in widely using the criterion for 

higher-order sampled-data systems.    A recourse to transformation to 

other planes was therefore attempted to yield easier stability tests. 

SIMPLIFICATION OF THE STABILITY CONSTRAINT EQUATION8'  10 

Since all   a     in equation (2) are real,   the matrix can be written as: 

\   - 

Pk        % 

QT      PT 

"k       ^k 
(4) 

where the superscript   T   denotes transpose and 

*   The author acknowledges the helpful correspondence with Dr.  N. H. 
Choksy with regard to the material in this section. 
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It is noticed that all the diagonal terms of Pk and Qk are equal and both 

are^symmetric with its cross dia|onal.    It is this characteristic of the 

Schur-Cohn matrix that leads to the following simplification, using a 
unitary transformation. 

matrix, 
Let   Ij^ be the k-order identity matrix.  1^ the k-order permutation 
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•• 
and Uk the 2k-order unitary matrix 

k F* 
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, (note that U, "1 = U, ) 

J 
Let    Ak - Uk     Ak     Uk ,   then by actual substitution for Ak    ,  it is 
readily evident that: 
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Thus the Sch{lr=Cohn determinant | AjJ is reduced to the product 

of two k-order determinants1, 2 which is considerably easier to evaluate 

than the direct evaluation of the 2k-order determinant | Aj .    If a   are 

complex,  then this simplification is no longer possible1, 2. 

THE SYMMETRICAL PROPERTIES.OF \ X.  +:Y   |   | X.   - Y   I 8 

Now I ^ + Yk|  is a homogeneous polynomial of dimension k in 

the variables a an.    The polynomial  | ^ - Yk |  is identical to the 

polynomial | Xk + Yk |  except for a change of sign of those monomial 

terms which have an odd number of elements from Y ,  i.e., 

'k'   = Ak " Bk 

where Ak(Bk) is the sum of all monomial terms which do not change 

(do change) sign when Yk is replaced by - Y.   in | 3C+ Y   | . 

IDENTIFICATION OF A^ ANDBk(which we designate as the stability 
constants)  . # 

1) Let all the a.'s in the matrix Yk in (12) be denoted by b.'s; 

then expand the determinant ) 3C+ Y, I  in terms of a. and b . 
K        *; • i i 

2) After expansion,  examine every term which is a product of 

a.'s and b.'s;   if it contains an even number (including zero) of b.'s, 

then it is assigned to Ak;   otherwise assign the term to B. . 

3) After collecting the terms of Ak and B ,  replace all the 
b.'s by the a 's.    Hence 

(18) 

(19)" 

+   *-rom (11) and (12),  by repUcing all the a's of Y,   by b's. we obtain A, and 
k    y expanding the following determinant^ 

lxk.+ Ykl! 

K=l, 2, . . . , n-1 

a.+b 0    n- k+1 a.+b 1     n- k+2 a,+b 2     n ■k+3' m •ak.2+bn-l ak-l+bn 
bn-k+2 an+b 0     n- k+3 a.+b 1     n- k+4'"" ak-3+bn V2 

bn-k+3 
• 

bn-k+4 
• 

a.+b 0     n- k+J* '    ak-4 ak-3 

bn.l 

b:  0 n 
0      0 

0.. . 

0   0 

• 
■ 

al 
ao 

• • • 
a2 
al 

b n 0 0     0 0   0 0 ao 

(20a) 
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and for stability from (3) this reduces to 

I Ak I  > I Bk |  ,  k even 

'Ak'  <  lBkl'   k odd. k = .l. 2, ...n (20) 

Therefore,  the application of the SchJlr-Cohn criterion now reduces 

to the evaluation of determinants up to order n only for the nth order 
polynomial. 

It should be noted that the last simplification is useful only for 

design procedures where the coefficients of F{z) are given in other than 

numerical values.    However, if ak's are given in numerical values, the 
use of equations (17 and 18) is preferred. 

EQUIVALENCE OF THE 1+ST. CONSTRAIMT | An |l | B   |   TO A SIMPLE 

AUXILIARY CONSTRAINT9: " 

The constraint which we will introduce involves the exclusion of 

certain real roots outside of the unit circle.    It constitutes a necessary 

(but not sufficient) condition for the roots of F{z) to lie inside the unit 
circle.    This constraint is given by 

F(2) |      > 0   (1)   and F(z) .      > 0   for n even (2a) 

z = 1 z=-l < 0 for n odd (2b) 

The alternate constrain F(z).     < 0 and F(z).     <   0 for n even;  is 
z=1 -r4-l> 0 for n odd 

also possible.    However, we may exclude this, without loss of generality, 

by always letting an be positive,  in which case to satisfy (1) and (2a. 2b) 

requires     that F(z) | > 0 and F(Z) . > 0 for n even 

z-*00 z=-oo < 0 for n odd. 

Lemma 1.    If (1) and (2b) are satisfied,  then there exists at least 

one real root of F(z) = 0 between plus and minus one.   Also the total 
number of such roots is oder . 

Lemma 2.    If (1) and (2a) are satisfied,  then the total number of 

real roots that lies between plus and minus one is zero or even12. 
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To show the equivalence of the constraint | A   |^| B   |  to the above 

auxiliary constraint it is simple to distinguish between two cases: 

(a)   n is odd:   Suppose we satisfy the constraint constants up to 
An-1 and ^-1'  then a generalization by Marden2of the Schur-Cohn 
criterion indicates that there exist (n-l) roots inside the unit circle. 

The arrangement of these (n-l) roots (even in number) inside the unit 

circle is one of two alternatives.  (1) The first alternative is that,  because 

complex roots appear in conjugate,   the total number of real roots between 

plus and minus one is either zero or even.   Now if we impose the auxiliary 

constraint (1) and (2b) on F(z) we find that the last single real root from 

the constraint I An | < | Bn |   should lie inside the unit circle from Lemma 1. 

(2)   The second alternative is when the auxiliary constraint is satisfied in 

addition to the first (n-l) constraint^  then the number of real roots 

between plus and minus one is either one or odd. and thus in this arrange- 

ment there exists a single complex root inside the unit circle.    Since 

complex roots appear in conjugate,   the last constraint |A   |<J B   |  is 

necessarily satisfied.    Similarly if the auxiliary constraint is no" satisfied^ 

then this indicates a single real root outside the unit circle and thus the 

last constraint is also not satisfied. 

For the case where  | Aj   =  | Bn |   this indicates a real root on the 

unit circle which is also the condition of the auxiliary constraint when 

written in absolute values equated to zero.    Therefore, we have shown for 

n odd that the auxiliary constraint is equivalent to the last constraint, 

(b)   n is even: Suppose we satisfy the constraint constants up to 
An-1 and Bn-1'  then this indicates that there exists (n-l) roots inside 
ihe unit circle.    The arrangement of these (n-l) roots (odd in number) 

inside the unit circle is one of two alternatives.    (1)   The first   alterna- 

tive is that,  because complex roots appear in conjugate,  the total number 

of real roots between plus and minus one is either one or odd.  Now 

if we impose the auxiliary constraint (1) and (2a) on F(z) we find that the 

last single real root from the constraint I An | > | Bn |   should lie inside the 

unit circle from Lemma 2.    (2)   The second alternative is where the 

auxiliary constraint is satisfied in addition to the first (n-l) constraints. 

• ■       ■    ■ .■■.■■ 
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then the number of real roots between plus and minus one is either zero 

or even, and thus in this arrangement there exists a single complex 

root inside the unit circle.    Since complex roots appear in conjugate 

therefore the last constraint I A   I > I B   I   is necessarily satisfied. Similar- 

ly if the auxiliary constraint is not satisfied then this indicates that a 

single real root lies outside the unit circle and thus the last constraint 

is also not satisfied. 

For the case when I A   I   =  I B   I  this indicates a real root on the 1    n ■       '    n 
unit circle which is also the condition of the auxiliary constraint (written 

in absolute values) when equated to zero.    Therefore, we have shown for 

n even that the auxiliary constraint is also equivalent to the last constraint. 

Therefore,  for stability test it can be concluded that the first 

(n-l) constraints of the A's and B's should be satisfied and the auxiliary 

constraint is then equivalent to the last constraint I A   1^  IB   I.    This 1    n'      '    n' 
equivalence has been checked for the examples discussed in this note. 

Furthermore    in the next sections this equivalence will be demonstrated 

mathematically. 

THE MODIFIED STABILITY CRITERION9 .   . 

Combining the previous discussions we can restate the stability 

criterion in a modified form as follows: 

A necessary and sufficient condition for the polynomial F{z) = a- 
2 

+ A^z + a  z    + ...  + a, z    + ...  + a  z ,  to have all its roots inside the 

unit circle is represented by the constraints 

and 
i"ki  -   !~k 

and by the following auxiliary constraint. 

F(z) |      > 0   and F(z) | >0 n is even 

for k odd 

for k even,  k = 1, 2, . . .»n-l 

or 

z=l 
,   for a    > 0 

z=-l < 0 n is odd 

rvix      rv  n > 0   n even       , 
F(1) • ^-^o n odd   ■ foranyan 

(22) 

(22a) 

(23) 



MODIFIED SCHÜR-COHN CRITERION9 

From the above consideration we can usefully modify the Schiir- 
Cohn criterion as follows  : 

If for the polynomial with real coefficients 

F(z) = a0 + a^ + a2z   + ... f anzn . an > 0 (24) 

satisfying the auxiliary constraint, all the stability constants A.  and B 

(k = 1, ...,  n-1) are not equal,  then F(z) has no zeros on the circle   I zl   =1 

and (\i + 1) zeros inside the unit circle for n even and \J. o&d as well as for 

n odd and \t even,    (ji is the number of variations of inequality sign in 

the stability constraints [1.   (A^ BJ, ....  (A^, Bn_j)] .    Furthermore, 

when n and ji are even and when n and \i are odd the number of zeros 
inside the unit circle is |x. 

REDUCTION IN THE NUMBER OF DETERMINANTS FOR OBTAINING THE 
STABILITY CONSTANTS A^s. aad B^s 

In this section we will show that for stability test only about half 

the number of determinants for obtaining the A-'s and B.'s are required. 

This important reduction is based on certain properties that exist between 

the Aj^'s and B^s.    We will indicate these properties first and then showf 

how they can be used for this major simplification 

l)   \2<\ZZ±A*-lAk+l<Bk-l\+V  k = 2, 3.4,.... n-1 (25) 

The above equivalence is established by expansion for the first 

few values of "k" and can be generalized similarly for any other value of 

k up to n-1.    When k = n-1,  the above equivalence is reduced to: 

A    i    <   B2 .  —»•    A     ,A    < B     ,B (26J n-1 n-1         n-2   n        n-2   n ^0' 

Equation (25) is the key identity for reducing the determinant of A and 

Bk. for it is noticed that by forcing certain restrictions on the A's and 

B's before and after a certain k we can dispense with A 2 ^ B. 2. This 

will be best illustrated by the few examples to be discussed. 

2)   An = (a0 + a2 + a4 + ---)<An.l-Bn-l) (27) 

Bn = <al + a3 + a5 + '' ' XVl " Vl)   '  n ^ 2 (28) 

10 
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The above identity can be easily verified for the first few values of "n" 

and can be generalized for any "n" .    The importance of this property 

lies in the mathematical proof of the previous section as follows: 

An   ^   Bn=* {a0+a2+a4+-*')2   ^   (a^+a,.... )2 (29) 

or 

A*   - B*    ^   0=±F{1).    F(-l)   > J (30) 
t 

which verifies the equivalence     | An|   <    |B   |    to the auxiliary constraint. 

3) ^n-l^n-P = An-2<a0+a2+a4+- '' ) -Bn-2<al+a3+a5+- '' ) 

n>3 (31) 

From (26) we can write 

<An.rBn-lKAn-l+IW   < 0^-2^2^   < I ^ 

using (27) and (28) in the right side of equation (32) 

An.2<Va2+a4+a6' • • nAn.1-Bn.1)-Bn_2(a1+a3+a5. .. KA^-B^J 

(33) 
<An-rBn-l)   I An-2(a0+a2+a4- " ' )-Bn-2(al+a3+- * * ^ < 0     (34) 

Comparing equation (34) with the left side of equation (32) we obtain the 

following identity: 

^n-l^n-l) < ^An-2(a0+a2+a4+- ' ' )-Bn-2(ai+a3+a5- '' > < S '   n > 3 

(35) 

The above relationship can also be derived directly for the first 

few values of "n" and can be generalized for any "n".    Furthermore 

the above property can also be shown as an equivalence relationship 

which can be written as a recurrence equation. 

(An-l+Bn.l) = An-2(a0+a2+a4-'' ^n-^VW ••)."> 3   (36) 
The use of this property lies in the fact that one can obtain directly 

(A    ,+B      ) from the previously obtained   A    _ and B     „,   and also to n-i      n-i * ' n-6 n-2 
verify the first property for the upper limit,  i. e.,  k=n-l (See Appendix). 

The above three properties in combination with the preceding discussion, 

will now be used in obtaining the new stability constraints for low order 

systems and then,  by generalization,   to obtain the constraint for an n- 

order system. 

"~+   To establish the identity for the general case,  it is easier to show 
the following equivalent conditions for (2 7) and (28): 

An+Bn= ^HA^-B^)! A^ = FRHA^-B^) 

11 
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Examples of Low Order Systems: 

We will apply the reduction properties wherever they are appli- 
cable to n = 2, 3,4, 5,  and then obtain the stability constraint for any n. 
We will assume an > 0.    This can be easily done by multiplying F{z) 
by minus one,  if necessary. 

(a)    n = 2,  F(z) = a0 + ajZ + a2z , a.   >   0 

The stability constraints,  using equations (22 and 22a) are given 
|a0|   <a2or lAj^Bj        -   • 

a0+a1+a2 > 0 ,    a^a^ > 0 .    or  | Aj   > | Bj 

(37) 

(38) 

(39) 

One could also remove the absolute sign from equation (38) for 

if a0 is negative with magnitude larger than a2,  equation (39) will not be 

satisfied.    However, we may leave the absolute sign in order to discontinue 

the stability test if (1) is violated. 

(b)   n = 3 ,  F(z) = a0 + ajz + a2z2 + A^Z3 a3 > 0 (40) 

The stability constraints from the modified stability equations (22) and 

{22a) are given by the following inequalities: 

laol <a3'   lAil   < lBil (41) 

K2-a,2|> a0a2 ala3 i  •   |A,|> |BJ (42r 

F(2) |      > 0 ,   F(z)i    < 0 ,   or  ( A,| <|B-I 
z=l z=l 3 ^ 

(43) 

To show how to obtain A_ and B? for this case: 

1)   Expand the determinant of Eq.   (20a) for k=2 and n=3, as follows: 

X2 + Y2 

a0 + b2 al + b3 

a02 + a0b2 " alb3 " b32 3 "O 
2) To identify A2 and B2,  follow procedure (2) on page 6, to obtain 

A    - a   2     K  2 
A2 " a0    " b3 

B2 = a0b2 " alb3 
3) Replace all the b's of A    and B    by the a's to get: 

A 2 2 ^ 
A2 = a0    "a3 

B2 = a0a2 " aia3 
A similar procedure is used for obtaining the A. 's and B. '(s) for 
any "k" and "n". k k 

12 
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Reduction of the constraint conditions; 

From the first property of the Ak and Bk . we may write in t^-     -ase* 

A22>B22 —A1A3>B1B3 (44) 

Since Bj is positive (i. e., a3 > 0), we may write for the right side 

Al 
~BJ~  A3   >B3- (42a) 

Using conditions (41) and (43) in combination with {42a) the new stability 
constraints are: 

'ao'   <a3 (45) 

B3 < 0 (46) 

lA3l   < IB3I   .   or F(l) > 0, F(-l) < 0                        {47) 

From the second property in equation (28) 

B3 = (aj + a3){A2 - B2) (48) 

Since a1 + a3 is positive (from Eq.  47) because it is equal to 

F(l) - F(-l) > 0 ,  therefore B3 is negative only when A2 - B    < 0.    From 

the third property of the stability constants it is readily seen that 

A2 + B2 < 0 is identically satisfied from the first and third conditions. 

Thus the simplified form of the stability constraint for nO reduces to 

'a-o'<a3 (49) 

a0    - a3    < a0a2 - a^ (50) 

a0 + ^ + a2 + a3 > 0.  a0 - ^ + a2 - a3 < 0        (51) 

Stability diagrams for a second and third-order case are presented in 
Figures 1 and 2. „ 

(c)   n = 4.  F(z) = ao + alZ + a2z2 + a3z3 + a4z4 .  a4 > 0 (52) 

The stability constraint 

laol   <a4'   lAll   < lBil " (53) 

ia02-a42|   >  la0a3-ala4l   '    l^^ lB2l (54) 

a0+a0a2a4 + aia3a4 " a0a42 " a2a42 " a0a3 I <l a0a4+a02 V^V^V^ 

-a0a1a3| (55) 

13 
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or |A3|   < |B3| (55) 

F{z)       >0.F(z) >0.    or|A4|>|B4| (56) 
2 — 1 Z~^l 

Reduction of the constraint equations 

Using property (1), we may write as in the previous case: 

A2>B2 —A1A3>B1B3'  orl^ A3>B3 @ (57> 

Equations (53),  (54), and (55) are now equivalent to (53),   B. < 0 and 

(55).    Using B3 < 0 with (55), we finally obtain the reduced constraints: 

UQI   
<A4>  or lAl'l   < Bl (58) 

A3 - B3 > 0,  A3 + B3 < 0 (59)+ 

F(l) > 0,    F(-l) > 0 (60) 

It is noticed that for the fourth-order      case only one determinant 

of third-order for obtaining A    and B    is required.   All other conditions 

are very simple. 

(d) n = 5,  F(z) = a0+a1z+a2z2+a3z3+a4z4+a5z
5, a5 > 0 .  (61) 

The stability constraints in symbolic form 

' Al' < Bl '   Bl = a5   > 0 (6 2) 

|A2|   > |B2| (6 3) 

lA3l   < IB3I (64) 

lA4l   >  lB4l (65) 

F(1)>0 .   F(-1)<0,   or  |A5|   < |B5| (66) 

Constraints in (59) can also be written as B3<0,    | A   |   < IB» | .  The latter 
has an advantage in numerical testing if B--C 0 is violated.   Then the test 
could be discontinued without having to calculate A,. 

++An alternate, form which is more advantageous for design can be obtained 
for the fourth order case.  This form can be easily obtained by using 
properties (1) and (2).  It is given as follows: (1) A, < 0,   (2) A, < - I B,! , 
(3) A3 - B3 > 0.   (4) F(l) > 0.   F(-l) > 0. *      2 2 '     2' 

In this case only one third order equation in (3) and one second order 
equation in (2) are to be solved, while in the former case two third order 
equations are to be solved.    It should be noted that when (2) is satisfied, 
relationship (1 ) becomes redundant. 
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Reduction of the constraint relationship: 

We may keep in this case condition (63) but we eliminate <64) 

by using the first property,   i. e. , 

A3<B3—A2A4 <   B2B4 (64a) 

With A2 negative because of (62)! the stability constraint for (62),   (64), 

(64a) and (65) becomes: (62), (63), A4 > 0, and A* > B* .    Using A    > 0   * 

in (65) i. e..   (A4- B4)(A4+B4) > 0 we obtain A4 - B4 > 0 and A4 + B4 > 0. 

Furthermore,  since *z = A\ - B^ is to be negative from (62),  it is 

readily satisfied if the second constraint is equivalent to A    - B    < 0 
*        2 

A2 + B2 < 0.    Finally, we obtain for the reduced form the following: 

A2 - B2 < 0,    A2 + B2 < 0 (67) 

A4 - B4 > 0, A4 + B4 > 0 (68) 

F(l)> 0,   F(-l)< 0 {69) 

It is noticed that in this case only the second and fourth order determinants 

are required.    One may also use a different form of reduction by eliminat- 

ing (68).    However,  this will not yield much simplification over the 

previous form because a fourth-order determinant with'a third-order 

determinant is then required. 

The above discussion can be generalized for an "n" which 

finally reduces to the following simplified criterion. 

The New Stability Criterion: 

A necessary and sufficient condition for the polynomial ' 

F(z) = ao + a^ + a2z
2 + ... +akzk+. . . +anzn with an > 0,  to have all its 

roots inside the unit circle is represented by the following constraints 

for n even and n odd respectively: 

+ Note A    = A 2- B 2 

^11 
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n even 

'Al'   <B1'       Bl = V0 

A    - B, > 0,     A, + B, < 0 

A5 - B5 < 0,     A5 + B5 > 0 

A7 - B7 > 0,     A7 + B7 < 0 

n odd 

A2 - B2 <0,  A2 + B2 < 0 

A4 - B4 > 0. A4 + B4 > 0 

A6-B6<0' A6+B6<0 

A      _B        > 0    for n=4k 
n-1     n-1  < 0   for any other n 

A        + B        < 0 for n = 4k 
n-l n-1  > 0 for any other n 

F{1) > 0,   F(-l) >0 

A        - B > for n"1 = 4k 

n-1 '    n-1   < 0 for any other (n-1) 

A      +B        > 0 for n-l=4k 
n-1     n-1 < 0 for any other (n-l) 

k = 1,2,3... 

F(l) > 0,    F(-l) <0 

Alternate Forms: 

An alternate equivalent method which is of advantage if the stability 

constants evaluation is carried out by methods other than a computer is 

hereby presented. 

n even 

lAj |   <   Bj .  B1 = an > 0 

IA3I   < |.33|   .   B3<0 

!A5l   < |B5| 

A7|   <|B7| 

B. > 0 

B7< 0 

n odd 

|A2|  >|B2| 

lA4l   >  lB4l' 

lA6l  > lB6l 

A2<0 

A4>0 

A6<0 

I A     1|<|B     , LB      <0.forn=4k , ,     , . >0. for n 
I    n-l'        "    n-l'* Vl>0, for any other     '    n-1' >' Bn-ll ' An-1<0, for a: 

n _ 

l=4k 
any other 

F(l) > 0,   F(-l) > 0 

iC —i ,   C, 1    J,    s    # 

F(l) > 0,   F(-l) < 0 

Note that Ak + Bk and Ak - Bk can be obtained directly from equations 

16 
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In the above case the identification of   | A. |  and | B. I  from the 

determinant  | X^ - Yk|  could be used.    This criterion can be applied 

for design purposes when the a^s of F(z) are given other than numerically. 

Illustrative Examples 

To illustrate the stability test,  we choose two problems,  one 

involving design and the other a numerical test of a polynomial. 

1.    The design problem is concerned with obtaining the maximum 

allowable value of k (the gain) of a feedback sampled-data system12 

shown in Figure 3,  to be stable. 

The overall transfer function is :given as: 

c(z)   _     G(z) (70) 
^R "   1 + C(z) v    ' 

where 

G(z) = z-transform of the forward path transfer function Gfs) 

(71) 

For stability we have to examine the denominator of Eq.   (70) i. e.,  1 + G(z) 

1 + G(z) = z3 - 0. 882 z2 + 0.118k (72) 

The above equation is a third-order polynomial in z,  and thus we can 

apply the stability tests obtained earlier for n = 3.    In this case 

a3 = ^  a2 = " 0' 882'  al = 0'  a0 = 0'118k'   and k to be positive. 

1) |a0|   <a3>   0.118k<l,  k < 8. 47 (73) 
■r 

,,    2        2 
2) a0 " a3 " a0a2 < 1,  yields k < 5. 75 or k > -13. 21 (for positive 

feedback) 

3) a0 + a1 + a2+a3> 0,  1 -0. 882  + 0,118 k > 0 is satisfied for any 

positive k > 0 
1 

a0 " al + a2 " a3 < 0'   "1 -0- 882 + 0.118 k < 0,  k < 15. 9 (74) 
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Therefore,   the maximum allowable gain for stability is the lowest value 

which is in this case   k =5. 75. max 

2.    Test for stability the following polynomial: 

F(z)= z3+2z2-0. 5z-0. 95 (75) 

The above polynomial is again of third order,  i. e..   n = 3,  thus we apply 

the stability constraints for this case, a =1,  a   = 2,  a^-O. 5,  a = -0.95 
•3 b i Q 

1) (a0|    <   a3.   0.95<1 

2        2 2 
2) a0 - a3 < a0a2 -a^a.^ ,0.95    - 1 > -1. 90 + 0. 5 

or,   -0.1 > -1.40 

(76) 

The second condition is violated,   thus there exists at least one root out- 

side the unit circle and thus the system is unstable.    To determine the 

number of roots outside the unit circle from the modified Schür-Cohn 

criterion,   (see p. 10) we also have to examine the sign of the last condition 

3)   a0
+a

1
+a2+a3   > 0'   -0. 95 -0. 5 + 2 + 1 > 0 

a0'al+a2"a3   < ^   -0' 95 + 0. 5 + 2 - 1 > 0 (77) 

The last condition | A3 |  < | B3|   is violated.    Now the number of 

changes of sign of 1,  A^s   and   Bj^'s are the number of roots inside 

the unit circle.    In this case,  the sign changes are,   1.  A2 - BZ < 0 
2        2 2        2 II 

A2 " B2 "^ 0'   A3 " B3   > Q'    There are two changes of sign,  and since 

only three roots exist,   therefore only a single real root exists outside 
the unit circle. 

CONCLUSION 

From the preceding discussion,   it is shown first that in the 
ii 

original Schur-Cohn or the modified Routh-Hurwitz criterion,   the number 

of determinants required for the stability is almost halved.    The use of 

18 
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the criteria for both design of discrete systems as well as for testing 

roots of a polynomial inside the unit circle is illustrated.     This 

criterion will now be useful in many applications such as the stability 

test of difference equations with constant and periodically varying 

coefficients,  in nonlinear discrete systems for the stability study of 

limit cycles,  in the design of digital computers,  in the stability test 

of linear systems with randomly varying parameters and in many 

other applications.    Thus it is hoped that this criterion will find many 

applications in various fields in addition to the above and its use by 

engineers,  physicists and mathematicians will be greatly enhanced. 
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FIG. I   STABILITY DIAGRAM FOR A SECOND ORDER CASE 

F(z)=a0 z + QjZ +a2z
2 a2=l 
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FIG. 2  STABILITY DIAGRAM FOR ATHIRD-ORDER CASE 

F(z) =a0 + 0,2 + a2z
2+a3Z3 ,     a3 = | 
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APPENDIX + 

General Proof of the Properties of the Stability Constants A-'s and B. 's 

In this appendix the second and the third properties of the stability 

constants.i.e..Eqn8.(27),  (28) and (31),   will be mathematically proven 

and from these two properties, the limiting case of the first property,!, e., 

Eqn.(26) will be demonstrated.    A heuristic argument will be presented 

to indicate that relationship (25) is vafid for all   k = 2,   3, . ..,  n-1. 

Proof of the Second Property: 

The second property as indicated in Eqns.  (2 7) and (28) is given as 
follows: 

An = (V a2 + a4 + a6 + • * • )<An.l " Bn-l) 

Bn = (a1 + a3+ a5+ a7+ . . . )(An_1 - B^^ .     n ^2 

To show this property it is simpler to manipulate the following 

equivalent relationship,   which is obtained by adding and subtracting 

the above two equations. 

An + Bn   =   ^o+al+a2 )<An-rBn-l) 

An-Bn   =   VVV----<-1)\><An.l-Bn.l) 

The above can be also written as: 

An + Bn = F(l) (Ari_1-Bri.1) (1) 

An - Bn  =   F(.l)(An_1.Bn_1) (2) 

.u    t. The author acknowledges the aid of Mr.  Jean Blanchard in 
the discussions of this appendix. 
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We will first demonstrate relationship (1) and following the same 

procedure relationship (2) can be similarly demonstrated.    The proof 

consists ofdeterminant manipulation and in particular using the follow- 

ing property. 

"The value of the determinant is unchanged if the elements of any 

row (column) are replaced by the sums or (differences) of the elements 

of that row and the corresponding elements of another row (column). " 

To show relationship (1),   we write first the determinant   A +B 
r ii n     n as follows: 

a +a, o    1 a1+a2. a„ i+a 
q-1     q 

a1+a3 a     -+a     , 
q-2     q-1 

a    ,+a n-1     n 

n-2 

A+B    =     X +Y     = n     n      '     n     n" 
aq-m+aq+i-2--"   an.|+1 

li+l 

^+2 

aq-i+l+aq+|-l"--   \.t 

aq-i-l+aq+i     Vi-1 

a
n        0      0    o   Oa 

(3) 

We will show the equivalence of (1) for the general row   and 

column in the above matrix,  by concentrating only on rows   1-1, 

-22 



I,  4+1   and columns   1-1,   q and   q+1   as follows: 

row 1-1 Vl+aq+i-3 a.4-i+l + afl+i-2 aq-l+2+aq+l-l 

row i aq-W+aq+i-2 VI+VI-I aq-l+l+aq+l 

row i+1 aq-i-2+aq+l-l aq-i-l+aq+l aq-l+aq+l+l 

column q-1 column   q column q+1 

(4) 
with aji = 0 

for |i > n or   |ji< 0 

Similarly we obtain the same rows and columns for the determinant 
An.rBn-l  =    IVrVll 

General Coefficients inMatrix A  ,-B   , 
  n-i   n-1 

row 1-1 

row i 

q-l 

q+1-2 

lq-i -1 

q+i -1 

row 1+1 

q-i-2 

lq+i 

column q-l 

r^ q-i+l 

q+i-1 

Vi 

q+i 

l Ml q-t-l 

\+l+l 

q-i+2 

q+1 -1 

q-l+1 

q+4+1 

Vi 

q+i+2 

(5) 

column q column q+1 
23 
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To demonstrate (1) we perform the following matrix manipulations: 

(1)   In the determinant   A +B    ,  add up to the last row,  all the previous n     n r 

rows.    We then notice that all the coefficients of the last row after 
this adding become, 

p=n 

I 
p=o 

ap = F(l). 

The new determinant after factorization of   F{1) becomes. 

A +B     =   F(l) n     n * ' D 

i   i   i 

n rows (6) 

n columns 

The elements in determinant D   are the same as the initial determinant 

A +B  . n     n 

(2)   In (6) we subtract the columns 2 from 1,   ...  the column   q   from 

q-1, . . .   and the column   n   from   n-I.    By so doing,   it is noticed that 

except for the coefficients of the column   n   and row   n   which is 

equal to   1,   all other coefficients of the row   n   are equal to zero. 

Therefore the matrix in   A +B     can be written as: 
n     n 
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A +B   = F(l) n     n        * ' 

a    ,+a n-1    n 

D. n-l rows 

0        0 

n-l   columns 

Now if we expand the determinant with respect to the last coefficient 

in rows.n we obtain a determinant of order   n-l   for   D. 
The general coefficients for   D.,  are as follows: 

Vi'Vi-Z 

row 1-1 

aq-i+l"V<-l 

aq+i-3'aq-< 3 

row i 

(Vi-2~aq-|+2) 

Vi-raq-tt-i 

aq+l-.2-aq 
$ 

a     . -a 
q-i      q+i 

row 1+1 

Vl-Z'V^ 

fq+i-l'Vi-l 

Vl-l^q 2) 
aq-<-l'Vl+l 

(vTvi) 
column   q-1 column   q 

- 25 
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To identify   D.   with the matrix   A    .-B    ..in (5),   we have to 
••■ n-i     n-i 

eliminate the encircled coefficients in the determinant   D . 

(3)   To show the above we rewrite for simplcity only the coefficients 

in the column   q   of the   D.   determinant as follows: 

row 1 

row 2 

row 3 

q-1     q+I 

+ 

'a/-a> 

a    ->-a ^1 q-Z     q+2 

a   ,,-a 
q+1     q-1 

q-3     q+3 

a   ■-j-a 

q+2     q-2 

row I VrVi 

(*q+i-i'\-in) 

MJW n-j 

q-n+raq+n-l   =    0'   if ^0'   or II'1' 
when q=0,   it is equal to 
a
n.ii   when q=n-l it is equal to a 

aq+n-2'aq-rrf2N 

column   q 
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To cancel the encircled coefficients in   D.    or in above,we 

perform the following operations:   Add up row 1 to 2,  we cancel out 

the encircled term in (2),  then considering the new row 2 obtained 

and adding this row to row 31».   we cancel out the encircled terms in 

row (3),   we continue this process to cancel all the encircled terms. 

Finally we obtain the column   q   in   D.   as follows: 

Column   q   in   D. 

row   1 

row   2 

row   3 

row   | 

row n-1 

aq-raq+l 

a     .,-a   . _ q-2     q+2 

*     T-a   ., q-3     q+3 

a       -a 
q-l      q+l 

0   .    if   q =/ li  when   q=l,   it is equal to 

or q ^ n-1 q=o4i it is equal to 
a 

Comparing this column with column   q   in Eqn.  (5),   we readily 

establish the equivalence which is valid for all q   columns and   i 

rows:   Thus the identity between   A      -B     .   and   D,   is established. n-i     n-1 1 
Therefore   Eqn.   (1) is verified. 

Following the same procedure with the appropriate operations, 

Eqn. (2) can be similarly verified and thus the second property is 

demonstrated. 
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Proof of the Third Property of  A^'s   and   B, 's: 

The third property as given in Eqn (31) is represented as follows; 

+a. .+...)B Vl+Bn-1 = WV '''  a2P
+-")   An.2-<al+a3+ * * *   '"Zp+V   '   '^2 

The above relationship is also equivalent to the following, 

FM <An.2-
Bn-2) + FWAn.2+*n~2) 

A     . + B     ,   =   1/2 n-1 n-1 

In this discussion    a     rigorous proof of the above relationship will 

be obtained from which the above property is established.    Furthermore 

by combining the third property with the second,  we will establish the 

limiting case of the first property,   i. e.,  k = n-1. 

The proof will be based on determinant manipulations,  by using the 

same properties as in the previous case. 

The determimant of   A   ,, + B     ,   can be written as: n+1      n-1 

- 28 - 
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column 2q+l    column 2q+2 

A     ,+B     . 
n-1     n-1 

ao+a2      al+a3    a2q+a2q+2      a2q+la2q+3     an-2+an 

n-i     n-11 

row 21 

row 2i+l 

row 2i+2 

a0+a4    a2q-l+a2a+3 

5 2q-2     2q+4 

l2i+l           a2q-2|+l+^q+2i+2 

2<+2 

2< + 3 

a 0   0 n 

a2q-2<+ a2q+2|+2 

a2q-2|-l+a2q+2< + 3 

n-3 

n-4 

0   0 0     a 

For the determinant   A     , + B„  ,.   we can write in a similar 

fashion,   however we concentrate on the general rows and columns 
as shown: 

Matrix of   A     ., + B 
n-2 -     n-2 

ttMMMttntttMmiimttMmt tt 

row 2| 

\<- i < \ row 21+1 

row 21+2 

column 2q+l column 2q+2 

a2q-2|+l 1 a2q+2i+2 

a^ +   a 
2q-2l  -      2q+2l+3 

a2q-2|+2 - a2q+2i+3 

a2q-2i-l t   a2q+2l+4 

a2q-q£+l - a2q+2l + 4 

a2q-2|  -   a2q+2/+5 

with a|ji = 0   if p.   < u   or   ji > n 
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Procedure for the Proof: 

1.    Using the matrix  A       + B we add to row 1,   the rows 
■*  «;   7      ?i4.i l"-1 lf ^Zp   \     ,     n~1 

* :>' '"' "+1'U     if n=2p+lj•    It is «adily seen that the first ro^ 
of the new matrix obtained becomes: 

ow 

row   1 

column 1 column 2 column 2q+l column 2q+2 

Ia2P 
Y 2p+l 1% 1 a2p+l 

with a2p= VVVV-'^V 

1 2p+l a1+a3+a5+a7+...+a2q+1+... 

2.    Then subtract from the columns   2q+l     0 < ^ P if   n=2p+l 
'    0< q< P-l if rt= 2p 

the columns   2q-l.    Similarly we subtract from the columns   2q. 

the columns   2q-2,   this operation being performed step by step. 

For instance if   n=6,   we first subtract the column   3   from the 

column 5.    Then the column   1   from   3.    Similarly we subtract the 

column 4 from 6 and then the col^n 2 from 4.    By performing this 

operation,   we notice that the first row contains all zeros except for 

the first and second columns,  where the coefficients are now 

Ia2p   and  1 a2p+l '  and by noting that 

?    [F(l)+ F(-l)  ] =    ^a^.  and ^   [F(1)-F{-1)]=   ^ 
2p+l ' 

the first row of   A      +B     .   becomes: n-j.     n-i 
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column 1 column 2 

A     .+B     . 
n-l     n-1 Row 1 i  [F(l)+F(-1)] i   [F(l)-F(-1)] 000. . .000. . . 00 

3.    Add column 2 to column 1,   then in the new determinant multiply 

column 2 by 2,  and divide the determinant by 2,  and then subtract 

column 1 from column 2,   we get for the determinant   A   , .+B     ,: 
n+1     n-l 

column 1 column 2 

An-1+Bn-1   ={i} 

in the determinant A,    the following coefficients in the general row 

and column appear: 

column 2q+l column 2q+2 

Row 2i 

a2q-2l+l+a2q+2i+l a2q-2i+2+a2q+2|+2 

'a2q-2i-ra2q+2i-l   * "a2q-2ra2q+2i 

Ki < 

o<q< 
Row 2£+l 

a2q-2i+a2q+2i+2 a2q-2l+l+a2q+2£ + 3 

■a2q-2l-2"a2q+2£ "a2q-2i-ra2q+2i+l 

We expand the previous determinant with respect to the first 

row to obtain: 

An-1+Bn-I   =  I [Fd) D^FM)^] 
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where   D.,   and   Dj   are the appropriate determinant obtained from A. 
If we can show that D., = A^-B^   and   ^ = An_2+Bn      .   then 

we complete the proof of the third property. 

4.    We will demonstrate first the equivalence between  A„   ,+B 
and   D1   as follows:   Dj   is obtained from   A as. n«2     n-2 

column 1 column 2 

Row 1 (ao+a3)+a4 

Row 2 (a4)+a5 

a1+a5-a3 

a  +a,-a. 
o    6     4 

column 2q column 2q+l 

D.   = 

Row2i.l|(a2<+1,+a2i+2 

Row U 

n-4 

n-3 

n-2 

(a2<+2)+a2| + 3| 

a3i+2'a2i+l a2q-2i+l+a2q+2l+l 

^2q-2i-ra2q+2£-l 

+a. 21+4  "21+2   <12q-2ix'i2q+2/.+2 

ha2q-2i-2'a2q+2i 

a2q-2i+2+&2q+2l+2| 

"a2q-2|'a2q+2i 

a2q-2i + i+a2q+2i + 3 

"a2q-2|-ra2q+2l+l 

K-2)+an-l 

-<an-l)+an 

an-an-2 

-an-l        • 

<0 -a n 

It should be noted that the elements in column q and row | of 

D1   are identical to the elements in column   q+i   and row   1+1   of 
A or of   A     ,+B 

n-i      n-1 

■ 
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5.    We subtract row   n-2   from row   n-3.   then after simplifying 

the new row   nO.   we subtract it from row n-4.  and proceed in the 

same fashion up to the first row.    Then we add column 1 of the new 

determinant to column 2.  then after simplification,   we add the new 

column 2 to column 3 and repeat the same process.    We finally obtain 
for   D    the following: 

column 1 column 2 column 2q column 2q+l 

V 

row 1 

row 2 

a +a, 
o     3 

row2l-J 

al+a4 

ao+a5 

21+1 

row 21 

2<+2 

a        +a 
2q-l     2q+2 

a,     ,+a 
2q-2     2q-f3 

a2q-2|+l+a2q+2l 

a^  +a, 
2q     2q+3 

a2q-l"t'a2q+4 

2q-2|+2 

21+2 21 + 3 

i 
2q-2l+ 

a. 

+a 
2q+2i+l 

2q+2i+l . 

2q-2<+l 

+a 
2q+2f+2 

It is noticed that the new expression of  ^   is identical to the 

expression of   A^+B^,  as shown earlier on p.   (29).    Therefore 
Dl " An-2H"Bn-2"    Similarly we can show the identity of   D     =   A 
-B 

n-2' 
n-2 

Therefore with this equivalence we ha 
identity: 

ve verified the following 

A     ,+B 
n-l^n-1   -2     1F(1^n-2-Bn-2)+F<-1)(An.2^n.2) 

or equivalently the third property 
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A
n.l

tBn-I   =   (aota2+V---a2p+---tV2-<al+a3+a5---)B,>., 

is established. 

Discussion of the first property: 

The first property as given in Eqn.  25.   can be also written as: 

Ak   ■ Bk   =   Ak-lAk+l " Bk-lBk+l   •    k = 2. 3. 4. 5... n-l 

We can readily verify the above property for the limiting case.i. e. , 

when   k = n-1,  by combining the second and third properties discussed 
earlier as follows: 

The third property gives: 

An-1+Bn-1 = (V W ' • + V ••)An-2-<ai+a3- ' ' ) Bn-2 

The second property gives: 

n o     2 2p /v   n-1     n-1' 

and 

B n   =   (al+a3+---+a2P+l
+---)(An_1-Bn_1) 

if we multiply the third property by   A^-B^   and use the second 
property we obtain: 

2 „2 
n-1   "    "n"n-2 " "n^n-^ 

An-1 " B^.   =   A-A-  . - B  B 

The above is exactly the first property for the limiting case,!, e., 

when k = n-1. By actual expansion, the first property has also been 

verified for   k = 2. 3, 4, 5.    In order to complete the proof it has to be 
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shown that it is valid for any  k   between   5   and   n-1.    This proof 

could be achieved in one of the following two procedures: 

a) By determinant manipulation as has been done for the other 

properties,   if we write for the first property the following equivalent 
form: 

<VV'VBk)=i HV1-
B

k-1'<Aktl
+,W + «'WVi'fVr'WJ * 

b) By induction method,   i. e. ,   to show if it is valid for k-1,   it is also 
valid for k. 

Both the above procedures involve difficult and complicated 

manipulations which were not attempted in this report.    However,   we 

may present a simple heuristic argument to indicate that the first 

property holds for all k.    This is based on the following observation. 

If we assume a certain n,   i. e. ,   n = 5,   then the stability constraints 
are given as 1 > 0, A^   0,  A2> 0,  A3< 0,  A4    > 0,   A    < 0.    Now if 

we assume any general n >5,   the stability constraints are given by 

1>  0,  A^   0,  A2>  0,  A3<   0,  A4>  0,  A5<    0.  A6 >    0,  A7<   0... 

The A's for the general case up to A_ are the same as the A's for 

n = 5 except for replacement of the specific n = 5,   the general n in 

computating the determinants.    Furthermore,   any relationship that 

holds between the A's,   i.e.,   Afc"1^ = Ak-lAk+l-Bk-lBk+l'   
k:=2' 3'4. 

for   n= 5,   also holds for any   n.    Thus one may deduce that.    "If 

the first property is verified for any specific   n,   it also holds for any n. " 

Based on the above deduction,   we can use the limiting case of the 

first property to extend the range for   n=6,   7...    For instance if n= 7, 

then the first property verified for   k=n-l,   becomes also valid for k=6 

and for all   n.    Similarly we may proceed step by step in the same 
fashion to cover all the intermediate cases of   k. 

*By showing that this equation which holds for k=5 and n=6, 
to be valid for k=5 and any "n", then a rigorous proof has been' 
constructed by using the limiting case to extend the range of k. 

- 35 

t ■■.<:■  ■ 
■   -       ■- ■.,...:..... 

'     ■   ■ 



Admittedly,   the above argument doesn't constitute a rigorous 

proof but only indicates a convincing argument that the first property 

cannot be violated for any   k   between   5   and   (n-1).    One can also 

use the expansion method to verify the results for higher   "k",   however, 

this again involves a complicated procedure. 

In summary,   the material of the appendix yields      rigorous 

proofs for the second and the third property and from these pro- 

perties a heuristic argument for the validity of the first property 

is indicated. 
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